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OVERVIENW

1.1 Program Background

Linear acceleration forces are encountered frequently in high-performance
aircraft during rapid turns and pullouts from dives. It has long been recognized
that these forces subject the pilot to a psycho-physiological stress that could
degrade his performance.¢ The problems associated with acceleration forces acting
on pilots became even more pronounced with the development of the supersonic high-
pertormance aircraft.

There is a wide spectrum of acceleration environments that may be encountered
in a flying aircraft; the direction of the acting acceleration constitute its major
distinctive characteristic,. A comparative nomenclature for the various conventions
used to describe the acceleration environment, largely referred to as G, may be
found in the literature (Roth et al. [2]). The subject of the current study was the
special linear acceleration which is known as positive acceleratfion, i.e., an accelera-
tion acting in the head-to-foot direction. Often, it is referred to as +Gz or vertical
acceleration.

A vast amount of research has dealt with the effects of linear accelerations
on pilots. These studies can be divided into two categories: Elementary research
pertaining to the psycho-physiological response of the human under G~stress, and
research dealing directly with the effects of sustained acceleration on human perfor-
mance, as expressed explicitly by degraded tracking capabilities and loss of flight

control. A survey of these research efforts follows in a subsequent section.

"According to Brown [1}, pilots in the Schneider Trophy Race of 1930 were the first
to have experienced the visual effects of sustalned acceleration.




These past research etfforts were mostly empirical.  Some descriptive models of
human response to G-stress have been postulated, usually via experimental data reduc-
tion and statistical analvsis techniques. In order to complement these research
eftorts, and to evaluate pilot performance ander G-stress analyticallv, a normative
pertormance model has beceme a developmental goal. That is, an analytical model,
capable ot predicting human performance decrements under G-stress is sought. This
tvpe ot g prescriptive model can be utilized in a variety of applications, such as
the optimization of fighter-cockpit design, or the definition of aircraft state
Augmentat iton requirements,

Aceordingly, a research program supported bv the USAF and performed concurrently
a4t the O oorce Aerospace Medical Rescarch Laboratory and at CYBERLAB the
University of Connecticut, was undertaken. Through this combined experimental/analytical
program, we have sought to investipate and model the following issues:

1" The effects of G-stress on human perforaance in a longitudinal air-to-

air compensatory tracking task. Syecifically, experiments were carried

out with closed-loop sustained accelerations where the subject's pitch
rate commands were also the driving signals to the centrifuge on which

the positive acceleration was simulated.

[N

lhe_eltects of G-stress on pilot performance of a secondary task. Along

with the longitudinal air-to-air tracking under G-stress, the subjects
pertormed a lateral tracking task as well., This task represented essen-
tiallv 2 side-task as there were no target aircraft motions in the
horizontal plane; the tracking error was induced solelv hy the pilot's
{nvoluntarv roll commands. The experimental results obtained at AMRL show
a stgnificant degradation in performing this secondary task when under
G-stress. Our analytical efforts duplicate these results, thus validating

the pertormance model that has been developed,




(3) Changes in pilot describing function when operating undcr G-stress. In

the second year of the project a new set of experiments was devised.
These experiments involved steady-state tracking under G-stress and they
facilitated frequency domain analysis of human response. Both the experi-
mental and the analytical phase of this work explore the chanves in the
pilot transfer function (between the observed tracking e¢rror and the
control stick input) under sustained G-stress.

(4) Changes in tracking scores and pilot's input-uncorrelated control

(remnant). One facet of performance-degradation under G-stress is higher
RMS values of tracking error and of control remnant. 1t is shown by model-

data comparison that the performance-model parameters are perturbed from
their nominal values when G-stress is introduced.

(5) Model parameters. A comprehensive identification program was developed at

CYBERLAB and greatly facilitated the development of the G-model. The
algorithm was implemented in software on our PDP 11/60 computer and
provided a mechanized, efficient and objective means for identifying the
values of the model parameters.

Prior to addressing these sub-tasks, a literature survey pertinent to the effects

of sustained accelerations on human beings was undertaken.

1.2

Review of Physiological and Tracking Performance under Sustained Accelerations.

1.2.1 Cardiovascular Response: Perhaps the most fundamental of a person's

physiological response to sustained positive Gz—stress is the increase in the
hydrostatic pressure gradient in the vascular system. The blood, being the most
mobile tissue in the human body, is shifted from the upper part: of the body,
notably the head, and is concentrated in the abdomen and the lower extremities.
These observations were recognized as a serious problem bv Code et ol |3,

and by Wood et al. {[4], and further confirmed by Lindberg and Wood (5}, ana




Fraser [6]. These articles report a consistent pattern of changes to the cardio-
vascular system when subjected to G-stress. According to these studies, there
are two distinct periods in the cardiovascular response to positive acceleration
with onset rate of about | G/Sec: (1) a period of progressive failure, and (2)

a subsequent period of compensation. During the cardiovascular failure the
following phenomena occur:

1. Decrease in arterial pressure at head level;

2. Increase in arterial and venous pressures at the lower extremities;

3. Increase in intra-abdominal and intrarectal pressures (approximately
linear with CZ);

4, Increase in heart rate (this observation was also ascertained by Little
et al. [7]}, and by Smedal et al. [8], although the latter considered
mainly linear acceleration in the transverse direction);

5. Decrease in ear~blood volume;

6. Decrease in the arterial pressure pulse amplitude at ear level;

7. Severe interference with blood-tissue oxygenation, vision, cerebral

activity and nervous system functions.

Following this period (- 7 sec) 1is a subsequent period of compensations.
Pressor reflex triggered by the fall in arterial pressure in the carotid sinus
initiates partial recovery; it produces hypertension at the heart level that
brings the hydrostatic pressure distribution in the vascular system close to
normal levels. These dramatic changes in the cardiovascular system profoundly
affect other physiological systems, as described below:

1.2.2 Vision: Human visual capabilities are extremely succeptible to variations

in the eye blood supply. Degradation of vision is further agravated by the
additional reduction in blood circulation in the eves due to changes in the
intraocular pressure gradient. The gross effects of positive sustained accelera-

tion on vision are as follows [9]:




1. An immediate consequence of decrement in the eye blood supply is
ret inal hypoxia. Photographs of the retina under sustained positive
acceleration can be found in an article by Newson and Leverett [10];

2. Gress limitations in visual fields: tunnel vision (loss of peripheral
vision), greyout, blackout. This, too, is a direct result of the
reduction of blood circulation in the cye. This phenomenon has been
observed and reported by many researchers (White [11], York [12]
et al.);

3. Impairment of visual accuity, as reported by Frankenhaeuser [13), White

and Jorve [14], and others;

Increase in brightness discrimination thresholds, reported by Braunstein
and White [19];

-~

5. It has been observed by Smedal et al. [8] that pupillary dilation occurs
with the loss of peripheral vision.

6. The oculomotor mechanism is affected. According to White and Monty
[16]) limited ocular mobility, under sustained positive acceleration,
has been observed due to mechanical changes in eye orbital tissues.
These limitations can be overcome (with considerable effort), but may
result in ataxic eye movements.

7. Smedal et al. [8] furnished photographs of the cornea, under transverse
acceleration. It is evident that it is mechanically deformed, resulting
perhaps in blurred vision.

1.2.3 Pulmonary-Respiratory Response: Physiological phenomena related to pro-

longed accelerations occur in the pulmonary and respiratory systems. Along with
the increase in the pressure differences in the vascular system, there is an
independent increase in the arterial and venous pressure gradients along the
lungs' base-to-apex axis. These findings are mentioned by Lindberg and Wood [5]
and Fraser [6]. This increase is followed by hypoxemia, which increases in
severity with repeated exposures to vertical G, as reported by Barr [17].
Lindberg and Wood [5] observed that displaced internal organs, under sustained
positive G, pull the diaphragm downward, causing difficulties in breathing. York
et al. [12) and Smedal et al. [8] reported evident cases of dyspnea (shortness
vt breath) under transverse accelerations (+Cx). Smedal et al. [8] also

reported reduction in the vital capacity, increase in respiratory rate, diminished
alveolar ventilation (hypoxia) and hypercapnia.

1.2.4 Psychomotor Performance: It is quite obvious that under sustained
_rsy¢ ot 3

acceleration, motor performance (as expressed in manual movements and manipula-

10




tion tasks) would be disturbed. Indeed, Brown and Lechner, in their survey ot
research, report changes in the forces that both arms can exert when under G-
stress [1]. Canfield et al. [18] conducted experiments proving that movement
time and reaching errors increase with increase in G. Similar results were
shown by Cohen [19,20], Kaehler and Meehan [21], Little et al. [7], and
Frankenhaeuser [13].

An increase in human reaction time to various stimuli comprise another
symptom of sustained acceleration. These findings are reported by several re-
searchers (Frankenhaeuser [13], Canfield et al. [22,23], Kaehler and Mechan
(21].)

1.2.5 Other: The following are among some other side effects of positive G:

1. Degradation in intellectual performance, resulting probably from

acceleration effects on the central neural system (Grether [9],
Frankenhaeuser [13], Ross and Chambers [24], Miller et al. [25]).

2. Variations in time perception with different levels of G (Frankenhaeuser
(13]).

3. FEffects on the vestibular, kinesthetic and proprioceptive senses
(Brown and Lechner [1]). These are attributed mainly to the centrifu-
gation side effects, and are usually not present during linear accelera-
tion in real flight situations.

1.2.6 Tracking Performance

It is our conviction that some, if not most, of the psycho-physiological
responses to sustained positive acceleration lead ultimately to variations in
tracking task performance. It was necessary, therefore, to review the findings
related to this problem.

First reports concerning tracking performance and flight control did not
appear, as noted by Grether [9], until 1958. Since then, research in this area
has been extensive, although no modeling efforts using modern control theory
have ever heen attempted. The majority of these studies has been oriented toward
transverse (+Gx) direction. Some studies, however, do deal with tracking perfor-

mance (not necessarily air-to-air tracking) under +Cz gtress.

1




Brown and Collins [26] and Brown [27] pioneered in closed-loop centri-
fuge simulation of air-to-air tracking tasks. They found a significant increase

' mostly in the longitudinal axis,

in what they called "average tracking scores,'
when performing under vertical acceleration stress. Piranian [28] and Smiles
[29] also reported that sustained +GZ up to 6 G had appreciable effects, degrading
air-to-air tracking performance. Similar results, for an open-loop centrifuga-
tion with various levels of +Gz, in pursuit tracking experiments were reported

by Fletcher et al. {30]. Kaehler [31], Little et al. {7], and Middleton et al.
(32] conducted various tracking experiments and, although they considered trans-
verse accelerations only, their results generally agree with the +Gz experiment
results.

Creer et al. [33] conducted tracking experiments that simulated a re-entry
vehicle piloting task. One of their findings was that an increase in tracking
deficiency occurred when performing under +Gz acceleration, vs. +Gx or —Gx
stress conditions. In addition, they observed a marked deterioration in pilot
tracking performance during the onset of the acceleration, i.e., during active
G. They explained this by 'vertigo sensations caused by the angular rotations
ot the centrifuge gondola as the centrifuge was brought up to the desired
operating speed."

There is a general agreement among the various reports, relating to the
effects of acceleration feedback on tracking performance. This type of
informational feedback is usually categorized as motion cues. Chambers [34]
reported 4 noted improvement in performance when the centrifuge was engaged in
a closed-loop operation vs. static conditions. However, this was found for low
levels of acceleration only. Brown and Collins {26] reported pronounced improve-
ment in dynamic vs. static tracking scores when a coordinated flight simulation

was employed. Guercio and Wall [35] also emphasize the importance of congruent

R




motion in compensatory tracking. They showed that the presence of motion cues
resulted in lower tracking errors.

1.3 Experimental Phase

Experiments investigating the effects of positive acceleration on pilots were
conducted as early as the mid 1930's. These studies were carried out in real aircraft.
Continuing research interests motivated the construction of the first human centrifuge
systems, for aviation studies, in the U.S. and in Germany. The basic human centrifuge
is a gimbal-mounted cab at the end of a rotating arm., The cab is free to rotate,
independently of the rotating arm, in two axes. It is possible, therefore, for a pilot
seated in the cab to perform a task while subjected to a wide variety of acceleration
patterns. Later models of the human centrifuge were able to replicate air-to-air
combat situations successfully. A detailed description of a human centrifuge can be
found in the literature [4,26].

One way of inducing a sustained positive (z-axis) acceleration on a centrifugated
subject is to spin the apparatus around the central axis of rotation, while tilting

the cab inward. This is shown in Figure 1.

w O HUMAN
\\\\\\\\~\ > sz

Lo

HUMAN CENTRIFUGE

Fig 1 POSITIVE ACCELERATION INDUCED ON A CENTRIFUGED SUBJECT
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In order te achieve the desired (or commanded) vertical acceleration, the angle
and the radial velocity w are adjusted according to equations 1.1-1.2, R being the
radius of rotation:

2
TR cost + ¢ osine = O (1.1)

2 X

+ R sin: + g cosa = 0 (1.2)
This is the technique emploved in the high-G experiments that were conducted on the
Dvnamic Environment Simulator (DES) facility at the Air Force Aerospace Medical
“aesearch Laboratory.

I'he AMRL experiments simulated an air-to-air combat scenario. The centrifuged

subjects were instructed to track a stvlized target aircraft image using a cross-hair
reticle sight, The turget motion followed either a predetermined or a pseudo-random

pattern in either the longitudinal or the lateral plane. The closed-loop configura-

tion of the tracking task is schematically depicted in tigure 2.

TARGET INPUT

CONTROLLED
' DISPLAY
MANIPULATOR ELEMENT >
CONTROL
INPUT
OBSERVATIONS
HUMAN
OPERATOR (TRAEKING ERRCR)

Fig. 2 CLOSED-LOOP TRACKING CONFIGURATION
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In order to segregate the effects that GZ forces have on the pilot's tracking
performance, two experimental conditions are employed. In the first case, denoted
here as static=G, the subjects tracked the target with the centrifuge at rest. In
the scecond experimental condition, denoted here as dynamic-G, the DES
was in motion. In addition, a third condition was included in one set of experiments
(Chapter 111).  In these experiments the cumulazive G-effects were investigated. Thus,
every G-stress run was immediatelv tfollowed by a static tracking session. These
were denoted as post-static runs,

The recorded data included the time histories of tracking errors, the subject-
commanded and attained-G, his control inputs and other auxiliary variables. In addition,
phyvsiological variables were recorded, heart rate, systolic and diastolic pressures,
ete. The raw data analysis included across-subject ensemble averaging and FFT analysis
on stationary data.

A detailed description of the experimental program as well as of the data
analysis techniques involved follows in Sections 2.1 and 3.1.

l.4 Modeling Considerations

The modeling efforts in the present study have been based upon the well-known
Optimal Coantrol Model (OCM) (Kleinman et al. [36], Baron et al. [37], and Kleinman
vt al. [38]). The main contribution of the modeling phase was the adjustment and the
modification of the OCM to include the effects of Cz‘stress on pilot performance. A
major reason for using the OCM as opposed to some other human performance model, is
that the parameters of this model are descriptive of human limitations. Thus, they
have shown @ remarkable invariance over different task specifications, input distur-
bances or commands, and controlled-vehicle dynamics. It therefore follows that
changes in the "nominal’™ OCM in a sustained acceleration environment are induced

almost entirely by the Gz stress.




~Modeling Approach
3 stews the structuare of the OCM. The vehicle dynamics are
T aTod da wrnte spaee form

(ty = A x (t) + b ult) +Ew (t) + F 2(t)
G0 S0y (RIS o

©

vity = ¢ x (t) + d‘u(l) (1.3)
where w“LL) ic uwsuallv a white-Gaussian disturbance with covariance WO and
R o desormanistic vehicle rrajectory. The displaved information X(t)
oneis oo o f trocking error e(t) and error-rate ¢(t), as well as other auxiliary

variables and their rate of change.
The visual assumption in the OCM is that the human perceives a delayed and
noisy replica of y(t), viz.,
ip(t) = y(t-1) +_!y(t—() (1.4)

where the white-Gaussian observation noise vyi(t) of the i-th indicator has

covariance
oo, .
PR £ S «‘ 2 ) .
Yy (®) F (ONG@E) Elyi(t" (1-3)

In these equations t is the pilot's lumped time-delavy, “yi is the observation
noise/signal ratio, fi(t) is the fraction of attention the human is allocating
to each observation+, and N(ai) is the equivalent '"gain'" of the visual/indif-
ference threshold ai. The gain N(ai) is obtained via statistical linearization
derived from Random Input Describing Function Theory, and is also a function of
the mean and the standard deviation of yi(t).

Assuming that the system state estimate, %o’ is given, then the human

develops an optimal control strategy by minimizing the quadratic cost functicnal,

*Tntal attention fTOT is assumed = ], This is subdivided across axes of control, and

further subdivided among instruments per axis.
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1 e

J(u) = £im E; (y'(t)q, y(e) + g’ (£)) dt‘- (1.6)
e]

where Qy = diag (qyi) are the relative weightings on the observations and g
: : . . , .

is the control-rate weighting . Usually, the tracking error weighting co-
efficient, Qg is non-zero., since the objective is to minimize the observed

error. By augmenting the state estimate with the control u, viz.,

B
=[ °} (1.7)

u

{5

this strategy results in the optimal control gains, L arising from the

l’

pertinent steady-state Riccati equation, such that

S

23 8
u(t) = -yl[u"] = -L ()

1f we define L! 4 r—l L, T_l and include motor noise in the pilot's
-1 N -—opt N

control, the optimal control, u(t), obeys the equation

. - 1" A
Ty + u = Lopt 30 + vu(t) uc(t) + vu(t) (1.8)
\
or with L'% [L' ;0]
= =opt}
. 1'% = .9
rgd tusL'x + vu(t) uc(t) + vu(t) (1.9)

The parameter Ty can be interpreted as a ''neuromotor" time constant. Usually,
N is specified and g is adjusted accordingly, as there is a one-to-one

correspondence between the two.

The motor noise v (t) is assumed to be white and Gaussian with covariance
u

We assume that the subject seeks a control strategy that would minimize control-

rate

rather than control.




that scales with the covariance of u(t),

Vu(t) = ﬂpu cov [u(t)]. (1.10)

The coefficient Py represents the motor-noise/signal ratio.

Next, it is necessary to examine the other blocks of the human information
processing unit (Figure 2). That is, howdoes the subject estimate the state
X(t-1), and how does he predict %(t) from %(t-1). The augumented state

x'(t) = [gé(t), u(t)] obeys now the differential equation

*(t) = A x(t) + bu (t) + Eu(t) + Fz(t) (1.11)
where
7 ]
& 1k 0 E, |0 _F_o’l
Asle b oot p= o]l BE=t--t-z)| F=f-- (1.12)
1 ~1]°- -1/ : -1 y A
0 1 -ty ™N 0 Tty ¢ J
I
wo(t)w WO | 0
and w(t) with the covarience W =| - -} - - (1.13)
i
]
Vu(t)J 0 Vu

It is not difficult to show, that

t
x(t) = eMx(t-1) + f

t-T

e AE79) bu_(0) do (1.14)

, . A . . _
In Equation (1.14)the subject will use the estimate k(t-1) = E(t). This state

estimate is obtained from the Kalman filter, via

P (t) = Ap(t) + bu (t-1) + G(t) [y (t) - Cp(t)] (1.15)




where

p(t) = E :5(:-1)1%(0), of_t€ (1.16)
The filter gain G(t) is

1

G = 7 Yy = . .
(v) = £(r)C Vy vy , Vy(t) diag [vyi(c)] (1.17)

where L(t) is generated from the solution of the Riccati equation
L= Ay + A" - zc'v;lcz + EWE' + W, (t) (1.18)

Three observations should be made with regard to Equation (1.18).

1. The matrix W,(t) is a "pseudo-noise' covariance matrix and arises from
the deterministic signal z(t). It is chosen in such a way that the
filter adapts to the changing characteristics of the trajectory z(t).
At present,

F 22 (t-1)F' (1.19)

wd(t) = Tcor =

where Tcor is linked to the human short-term memory, or alternately,

is dependent on the z(t) profile's bandwidth.

2. In the absence of the deterministic target motion, W,(t)=0 and I=0.
That is, the steady-state Riccati equation is solved.

3. 1In the case when the noisy disturbance wo(t)=0, the term EWE' becomes

-4 - - - - (1.20)

1.4.2 Model Application

Basically, modeling efforts utilizing the OCM can be approached in two
ways:
1. Time-varying (nonstationary) mode

2. Steady-state mode.
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1.4.2.1 Noastationavy Mode'-
In the time-varying case, the target’'s profile is deterministic,

i.e., z(t)#0 and wo(t)=0. This modeling cuoir que wsualic invelves a

comparisen of experjwentat Troa time Nino e Todrare o o Lde i

statistics) with the model-oradictad o o Teo T Y, L.RTe s

to develop Lae $Tocess mean and Covarian. = pvapag.fiow euualions whic,

arise frum the npon-vandoa comoorend 2l oo a0 S, Ihese

equations have been thorougnly documented (e, . 138,039, 1400, and

the basic continuous time equations are repeatec lhiere wituoul proofs for

completeness.

[f one defines

& = E(®)

x = E(x)

gl(t) = xft-1) - p(t) = filtering error ; él = E(El) (1.21)
e,(t) = x(t) - %(t) = prediction error ; §2 E(e,)

¥y = E(y)

then the process mean and covariance are computed from the following

time equations:

R(t) =AR(M) +Gc g 5 ASabL' G2 e (1.22)

El(t) = Rgl(t) + F z(t) ; A% ace (1.23)
t

&,(t) = AE-9) F z(0)do ; (1.24)
t-1

0 =& + M e 0+ e (1.25)

y(t) = cx(t) (1.26)
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The boundary conditions are appropriately chosen at time t=T.
Next, if we let X, El’ EZ’ X and Y be the covariance matrices of

v &y, X and y respectively, and

M(e) 2 E [kg(c) - %(t)) (e, (t) - ;l (t))j = cross covariance, (1.27)

one can show that

X(t) = x(t) + 2TM'(t) + M (neh T+ eATEl(t)eA By () (1.28)
t 1

E, (1) =J[ A (E-0) [#W(O)E' + wd(o)] M () 4 (1.29)
t-T

El(t) = AEl(t) + El(t)A + GVy(t-T)G + EW(t~1)E + Wd(t—T) (1.30)

M(t) = AM(t) + M(t)A' + GC [El(c) - X(tﬂ (1.31)

X = AX + XA'+ GoM' (£) + M(e)C'C' + Evy(z—r)é' (1.32)

Y = ¢xc' (1.33)

Notice that since we assume in this case wo(t)=0, the matrix W(t) is a

-1
zero matrix except for the lower right 1x1 corner entry which is ™ Vu(t)
(see Section 1.4.1).

1.4.2.2 Steady-State Mode

In the steady-state mode z(t)=0, and the target input is driven
by a stationary colored noise. The usual practice is to describe the
disturbance wo(t) as a white-Gaussian noise, and to augment the system
with the dynamics of a noise shaping filter that characterizes the
driving noise. The stationary approach is most suitable for frequency
domaln analysis of human response. The model equations are represented
in the frequency domain, so that various performance measures can be
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predicted. The model outputs include any of several possible describing
functions associated with the subject, the vehicle, or the overall
closed-loop system. Also available are power density spectra of any
pertinent system variable that show both correlated (i.e., input-related)
and remnant (i.e., human-related) components. In addition, the perfor-
mance scores (RMS values) are predicted. Among the quantities that are
considered in the present study are

1. Pilot describing function,

2. Pilot control remnant, and

3. Tracking scores: RMS values of the tracking error and control.

This modeling approach is most suitable for model identification
from frequency domain data. The model is applied in conjunction with
fourier-transformed experimental data, and measures such as described
above can be compared.

The frequency domain equations are summarized here. A more detailed
theoretical background can be found in the literature (e.g. [41]).

We assume the model of Equation (1.11) with z(t)=0. All initial
conditions are ignored since s;eady-state situation is assumed. The
major transfer function of interest initially is that between y(s) and
uc(s):

u_(s) = H'(s) y(s) (1.34)
This function is obtained by taking the Laplace transform of the equations

of Section 1.4.1. The following relationships result:

H'(s) [1 + I‘(s)] ‘]ge(“‘“)" (s1-A) "¢ (1.35)

r(s) yz e(A'SUTl(sr-A)'l - (sI-A)-l] + (sI—A)—l'*_b_ (1.36)
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The overall input-output human transfer function is thus
-1.-1, A
uls) = ~(s + 1) H (s) y(s) = 1 (s)y(s) (1.37)

where we note that (s+rN—l)~l is obtained from the lower right 1x1
corner of (sl—A)“l. Next, we also require the decomposition of all
closed-loop signals x, v and u, into their two major components. The
first is that part linearly correlated with the independent input

disturbance wn(t). The second is that part due to the human-injected

remnent v and vy Thus, with g; = [E;, 0], we obtain
' ' +
“v(s) = ~1(s)Cx(s)~ H (S)VV(S) (1.38)
x(5) =(sl-A+bH C "IF r(s) +(sI x+bH'c51b ' (s)+ -1 (s)| (1.39)
X(s (s1-A+bH C) :Ow(b) s[-A+bH b _yy < TN Vu ) .
v{s) = Cx(s) (1.40)

Following these equations the human transfer function of (1.37) can be
obtained. This describing function is of interest to us since it can be
measured experimentally. It is defined, relative to the disturbance
w”(t), as a ratio of the transfer function between u and noise v, to

the transfer function between the observed tracking error e and noise

w . Thus
(8]

u(s)/w (s)
0

uls) _ "o T
e(s) e(s)/wo(s) (1.4
To compute this human describing function we use
els) . focsr-aron'o) g
w o (s) - .
e
(1.42)
u(s)  _ - "oy L
7o) [(sr A+bH C) —EJ

u

It is recognized that v (t) does not strictly have a Laplace transform. This,
however, is not a problem since we are interested in the uncorrelated spectra.

24




The subscripts e and u in (1.42) indicate that the tracking error-

and control-related components of the describing function are considered.
Finally we require power spcectral densities of the varions variables

in the loop. These are obtained from Equations (1.38-1.40). Ftor anv

signal the spectrum is decomposed into input and remnant related com-—

ponents, (superscripts ¢ and uc respectivelv) and the spectral densities

? (-) are obtained, viz.,

N
uc % .
IR LS A B L,,2,.
[ YR .}‘ ,’-¢-kl.(1...,),’v-\,i + %?l“'k(l“’”vu (1.43)
X i=1
k
. l 3
Oy = el (Go)iw (1.44)
mi7k 0

Xk

where,

k-th state component

=

U = ki-th element of (SI~A+Q§'C)—lhﬂ'
@k = k-th component of(sI—A+pﬂ'C)—¥gTN_l
Ny = number of observed variables (dimension of Z(t))

k-th element of (SI‘A+PH'C)_1§0

B

c
Similar expression are easily obtained for @C (w) Quc(w) § (W) and
uc uc Yo Yk u
@ (w) The spectral density @ (w) is of special interest in this
u u
study as it represents the human input-uncorrelated control. [t will

be shown in Chapter 111 that the magnitude of @EC(“O In G-stress

conditions is significantly larger then it is in no-G situations. This
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is an excellent indicator of the human's motor randomness which increases
in the presence of sustained linear accelerations.
1.4.3 Model Development
The baseline model adopted in this work was, as noted previously, the
Optimal Control Model of human performance. The approach taken in the G-&tress
modeling process was to develop a "G submodel' that can be embedded in the
general structure of the OCM. The steps taken in this direction included a
development of technology to isolate and identify the effects on tracking
error and pilot control of target motion versus those associated with G-stress.
The effects of target motion were studies via static (no G) experiments. If
a pilot model is first tuned accurately to this case, then our hypothesis was
that anv data-vs-model mismatch in the dynamic-G tracking case is attributable
to the effects of the G-stress. The subsequent identification process to
model the mismatch consisted of four steps:
1. Sensitivity analysis: A comprehensive sensitivity analysis of
model to OCM parameter variations was undertaken.
2. Development of generic structural formulae that relate pilot para-
meters to instantaneous and/or antecedent load factor (G and Jh);
3. a. Adjustment (tuning) of the free parameters within the OCM:

1 a . and H
’ ’ Dyl pu’

N %4
3. b. Tuning of the free parameters within the structural submodels so
as to best match given data;
4. An identification program that performed the final fine-tuning
adjustments to the OCM and the G submodel parameters.
In addition to obtaining a performance model, this modeling approach provides

a potentially powerful method of obtaining physiological correlates of perfor-

mance under acceleration stress. We believe, therefore, that an ultimate
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modeling hierarch which defines in succession the functional relationships
between

1. Stress and physiology

2. Physiology and control parameters

3. Control parameters and tracking performance (via OCM)
will provide maximal flexibility for future work. This hierarchy is shown
schematically in VFigure 4. It should be noted, however, that even a failure
to obtain the submodels of levels 1 and/or 2 does not hinder the general success
of such approach. This "robustness'" of the technique is significant since
research in the area of modeling physiological factors has traditionally been
painfully slow and, to date, not very fruitful. It is always possible to
consolidate the first two levels into a single augmented G-stress-control
parameters model, circumventing the physiological variables altogether.

In the following chapter, the experimental and modeling phases of this

project are detailed.
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II. REPETITIVE - G -- NONSTATIONARY TARGET PROFILE

In the first year of the program, our efforts were directed towards analyzing
the Repetitive-G ensemble data, followed by the development of an analytical model.
The Repetitive-G experiments were performed on the DES facility at AMRL, and pro-
vided the data base for our nonstationary, time-domain, G-Stress performance model.

2.1 Experimental Program

Repeated trials of a compensatory tracking task were performed on the DES at
AIRL.. The subjects were seated in the centrifuge cab and were instructed to track a

simulated, triangular-shaped target aircraft image that was displayed on a graphics

screen. The target motion followed a predetermined pattern in the longitudinal plane.
There was no target input in the lateral plane, but the operator had to correct heri-
zontal tracking errors that were induced by his own inherent motor randomness. Figure

5 shows the structure of the visual/motion loops. Gp(s) and Gr(s) represent the
controlled vehicle dynamics in the pitch and the roll axes respectively; these are

discussed later.

G
p(s) —
|
|
DES |
CONTROL !
5(t) G,-STRESS |
|
HUMAN TRACKING
MANIPULATOR ](——- OPERATOR T RROR DISPLAY
CONTROL :
§.(t)
a [( -
> G (s)

L

Fig. 5 CLOSED-LOOP DYNAMIC TRACKING CONFIGURATION
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2.l.1  Target Profiles

The typical target maneuver in the longitudinal (pitch) plane is represented
in terms ot the induced vertical acceleration GT(t). Three different target tra-
jectories, emploving trapezoidaly-shaped acceleration profiles were used;

(a) No Peaks: Shown in Figure 63 runtime = 103.34 seconds
(b) One Peak: Shown in Figure 7; runtime = 121.33 seconds
(¢) Five Peaks: Shown in Figure 8; runtime = 260, seconds.
The target profiles are characterized by the following features:

“1) The peak ivvels dre 7C and are sustained for a period of 10 seconds.

ro

fhere is a 10 second rest period (1.5G) between two successive peaks.
137 The rate of onset of Gy(t) from the 1.5G level to the 7G peak level is
J..> G/Sec.

There is a 90 second final period of a constant 4 G level plateau for each

=~

of the three profiles. The subjects' performance was scored during these

periods only.

The profile Gp(t) can be interpreted as 'commanded-G" input to the human-
tracker. [If the human operator (HO) were to track with zero error, Gp(t) would
equal the acceleration forces he would experience. Acturally, the subject's
"attained vertical acceleration,"” Gp(t), would be a filtered version of Gp(t)
because of the lag inherent in the HO-System-DES dynamics. Since the aircraft's
attained G level is directly proportional to its pitch rate, one may envision the
simulated scenario as a pursuit-evasion task in a circular path with a changing
radius. The general equation that relates the aircraft pitch rate to its attained

G is given by
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Fig. 6 PEAK PROFILE GT(t)
-10 ‘}(‘T
1G
ff—
.75 G/%ec
90 sec
1.5G
10 Sec
Fig. 7 PEAK PROFILE GT(t)
76 76
10 Sec e 3
.75 G/Sec 75 Gosed 4G 4 —
90 Sec

1.66 1.56G
10 Sec 10 Sec

4x o

Fig. 8  PEAKS PROFILE Gi(t)

3]

-




G(t) = %(il + 1 (2.1)

where V is the aircraft's velocity (assumed constant) q{t) is its pitch rate, and
g = 32.2 ft/sec. The 1 accounts for the (fixed) acceleration of gravity.

2.1.2 Experimental Conditions

The major goal in the design of these experiments was to detect any perfor-
mance degradation under sustained G-stress. Therefore, two experimental conditions
had to be emploved.

l. Static-G: The subjects tracked the target with the centrifuge at rest.

2. Dynduic-G: The DES was engaged in a closed-loop mode. The subjects,
responding to a pitch error stimulus, generated a command control input in
order to reduce the tracking error. By this action, they induced a positive,
time varying GZ stress upon themselves by increasing or by decreasing the
angular velocity of the centrifuge (see also Figure 5).

Note that the roll error existed only in the visual loop and no off-normal

(Gy) accelerations were generated by the pilot's roll commands.

As a consequence, a 3x2 factorial design was utilized. Each of the subjects
tracked three different trajectories, and each trajectory was tracked both under
conditions of "Static-G" and "'Dynamic-G."

2.1.3 Subjects

The AMRL hazardous duty panel provided the personnel for these experiments.
Eight male subjects were trained, and each provided approximately six runs per

target trajectory per experimental condition.
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2.1.4 Aircraft Longitudinal (pitch) Dynamics:

The basic set of longitudinal equations being used for the attacker's air-
craft is the short-period dynamics. They are the pertubation equations written

about straight and level flight, 60=0.

°‘A=qA+Za QA+Z<S GA (2.2)
9, = MOl a, + %& a, + Mq 9, + M<5 GA (2.3)
6, = 9, (2.4)

Where GA is the attacker's pitch angle, 4, is the pitch rate, &, is the angle of

A
attack and 6A is the elevator defection (all pertubation values). The normalized
stability derivatives, Za’ 26' Ma, %&’ Mq and MG are generally functions of the
nominal angle of attack ao and dynamic pressure. The range of validity of
Equations (2.2)-(2.3) with constant parameters may be small, contributing to
modeling errors in an air-to-air problem. Also, the choice of equilibrium condi-
tion may vary.

In Equation (2.2) the parameter Z6 is usually small and sometimes neglected.

The same is sometimes true for n&. The analysis that follows will assume

M o= Zg = 0 (2.5)

as this corresponds to the assumptions made in the simulations. It should be
noted that this does not compromise the results; non-zero choice presents no

analytic difficulties.
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The transfer functions qA/cSA and aA/dA are, with Equation (2.5)

WM - Mk o
GA A(s) '
o M
A 8
= (2.7)
N A(s)
where
_ 2
A(s) = s - (Za + Mq) s + Man - M (2.8)

Acceleration Forces

The acceleration normal to the flight path due to an incremental flight-
path angle is
=V y 2.
G, vy, (2.9)
where V = aircraft velocity (assumed constant) and YA = (incremental) flight path

angle. Noting that

= 2.
a, +y 8 (2.10)

Y=, - Gy (2.11)

and using Equations (2.2) and (2.11) one obtains

_ 2
Gz = \'} Za aA ft/sec (2.12)

Thus, the transfer function Gz/6A is

S Za Ms

z . 2.
N (2.13)
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From the transfer function parameters given in the HAC study, A(s) = sz+9.9s+38

and

5 = 11, Z_ = -25/11, V = 1000 ft/sec
Q [¢1

<4
1

-7.63, M_ = -20.66
a

Geometric Considerations

Figure 9 shows the geometry of air-to-air tracking in the longitudinal
plane. The variables with subscripts A relate to the attacker and those with T
to the target aircraft. There are no gunsight dynamics, i.e. the sight is fixed
and aligned with the aircraft body axis. For the case of gunsight lead, etc.,

see Harvey and Dillow [42].

Inertial Reference
(equilibrium path)

1nertial line-of-sight angle

ZT =

ep = tracking pitch error = 6y - Iy

r = aspect angle of target = eT - ET

D = distance between the two aircraft = 1000 ft.

Fi9. 9 LONGITUDINAL TRACKING GEOMETRY
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Assuming VA = VT = V and small (relative) angles it has been shown [42] that

Ee= g Orp = ¥p) (2.14)

3
o<

for constant V and D. Since the explicit second order response of the target is

not important for modeling the attacker, we conveniently assume
qp(t) = z(t) (2.15)

where z(t) is a function of target profile as shown in Figures 6 - 8 and described

in Section 2.1.1. By referring to Equation (2.1), one may also recognize z(t) as

z(t) =% (';T(t) (2.16)

2.1.5 Aircraft Lateral (roll) Dynamics

The lateral tracking task represents essentially a side-task as there are
no target aircraft motions in the horizontal plane. In order to model the lateral
task, the dynamics between aileron deflection, Ga’ and tracking error, er, must
be defined. The implementation of the lateral tracking task assumes the following:
1. Roll angle, ¢, is small so that cos¢=1l and sin$z¢. This enaﬁles us to treat

the lateral and longitudinal modes as uncoupled. Moreover, the longitudinal
tracking task is not dependent on ¢ in this case.

2. The attacker angle-of-attack a, and sideslip angle BA are négligible. Thus,
the attacker velocity vector is always aligned with the body axis. This
greatly simplifies the system representation in the horizontal plane.

3. All turns are coordinated, i.e. the G vector is aligned with the aircraft's

z-body axis.
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For a level, covordinated, turn
. ) ¢
Y gy (2.17)
and when the aircraft is pitching
I = 4 . = 2
Y= (q + V) ® 3 g = 32.2 ft/sec (2.18)

where |, q, and V are aircraft Leading angle, pitch rate and velocity, respec-
tively. By the above assumptions q ~ Y for the vertical axis, Y being the

flight-path angle. Thus

€.
n

y 8
(YT + V) ¢T (2.19)

and

14

. . g
wA (YA + V) ¢A (2.20)

where the subscripts T and A again denote the target and the attacker, respec-
tively. Since we are interested only in the deviations between attacker and
target aircraft motions, it is covenient to consider an attacker-centered

coordinate system. Thus, we set ¢T=O and wT=0. It is convenient to define

A

¢ ¢A - ¢T = relative roll angle (2.21)
A
Yy = wA - WT = relative headings (2.22)
so that,
b= (y, + 8 2.23
b=t B (2.23)
The time-varying quantity QA affects the motion in the lateral axis. I[n fact,
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if we consider YA = constant then Equation (2.23) represents a dynamic lineariza-
tion. In the present problem YA is a random variable, with a mean and variance

that are functions of time. It is more convenient to use YT in Equation (2.23),

"

since this will be a "cleaner" signal. The approximation is valid to first-order

b=t B (2.24)

The next equation specifies the relationship between heading error y and

lateral tracking error er(t). It is casy to show that
: \Y

= = 2.25
e p VY (2.25)

where D = distance between the two aircraft.
The final equation reflects the aircraft roll axis dynamics which is essen-

tially a roll-rate command system

T¢¢+¢=6a (2.26)

In the present simulations % = 5,55 , D= 1000 ft and V = 1000 ft/sec.
¢

Equations (2.24)-(2.26) show that the response between da and er(t) is like
1/53. This is a very difficult system for a human to control, depending on the
visual information. The block diagram of this system is shown in Figures IU.
Note that VQT + g is the target normal acceleration in ft/secz. For convenience,
this open-lcop gain has been made into an equivalent gain K(t) at the input.

With these equations, the system description in both the longitudinal (Gp(s)) and

the lateral (Gr(s)) axes 1is complete.
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Fig. 10 A 4th ORDER LATERAL TRACKING MODEL

2.1.6 Data Acquisition

The data supplied by AMRL consisted of the time histories of
1. Longitudinal (pitch) axis tracking error
2. Lateral (roll) axis tracking error
3. Commanded Gz (input to DES)

r 4. Attained G,
5. Pilot longitudinal-axis stick input
6. Pilot lateral-axis stick input.

These were provided for the O-peak, l-peak and 5-peak trajectories. Two
magnetic tapes were provided, one for each experimental condition (Static-G and
+ Dynamic-G).
The sampling interval in the real-time operation of the formal experimental

runs was 0.06 seconds. The data were collected every other time step, providing




a sample of each of the six variables every time frame of 0.12 seconds. This
produced, for every recorded variable, the following:
l. 862 datum points in the 0O-peak profile,.
2. 1012 datum points in the l-peak profile.
}J. 2168 datum points in the 5~peak profile.
The total number of complete runs that were suitable for reduction and analysis
was:
- Static Condition: O-peak , N=41.
l-peak , N=38.
5-peak , N=32,
- Dynamic Condition: O-peak , N=37.
l-peak , N=36.
5-peak , N=24,.

2.2 Ensemble Data Analysis

The raw data obtained on the DES, in conjunction with the repetitive-G tracking
experiments, have been analyzed via aggregation using an ensemble averaging method.
This has been done for subsequent model-data detailed comparisons, and for covariance
modeling modifications.

An extensive set of software was developed for processing the single-run data.
Tape conversion programs were written on UConn Computer Center's IBM 360/65 to read
the AMRL tapes and to rewrite them in a form compatible with our laboratory's DEC
PDP-11 system. The PDP-11 system was used for the averaging process, as it enabled
a hands-on, interactive analysis. Accordingly, programs were written for averaging
the data in a serial, or sequential, manner. In this way the editing, addition, or

removal of a single run could be done iteratively, without having to re-average the
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entire ensemble. This 1s an extremely useful approach for treating outlyer runs
not satisfying a t-test criterion. Specifically, the following equations were
employed to reduce the empirical data process:

1. The ensemble mean x (i) of the i-th point of k+l runs is computed from
1

x, (1) by
X (D) = (?ck(i)-k + xk+l(i)) / (k+1) (2.27)

where xk+l(i) is the value of the i-th point (t = 0.12i sec) of the (k+1)-th

run.

2. The ensemble mean-square xi+l(i) was computed similarly from
2 . 2, 2 .
xk+1(1) = (xk(l)-k + xk+l(1)) / (k+1) (2.28)

and the unbiased estimate of the ensemble variance, Vk(i)’ was then found in

the usual manner
vV, (1) = (7(1) - “2(1))- k/ (k-1) (2.29)
k *x X% '

This, of course, resulted in the ensemble mean and ensemble standard deviation,

viz.,
N
x(t) =§ Z x, (©) (2.30)
k=1
N
1/2
o (t) =%NT11 Z [x (t) - x(t) 12 (2.31)
k=1

The resulting time histories are plotted as follows:
e VFigures 1] - [2 : Mean and SD of Longitudinal Tracking Error,

Static-G, O-peak.
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e Fivures 13 - 14 : Mean and
Static-G, l-peak

e Fivures 15 - 1p : Mean and
Static-G, 5-peak.

e Fiwures 17 - 18 : Mean and
Dynamic-G, O-peak.

e Firures 19 - 20 : Mean and
Dynamic-G, l-peak.

e Fipures 21 - 22 : Mean and
Dynamic-G, 5-peak.
In Figures 23 - 29 only the

profile is considered.

® LFigures 23 - 24 : Mean and

® Figures 25 - 26 : Mean and SD of Lateral Tracking Error, Dynamic-G.
e ‘tipgure 27 :  Commanded Gz Mean, Static-G.

® Figure 28 :  Commanded Gz Mean, Dynamic-G.

e Ftipgure 29 : Subject-Attained G Mean, Dynamic-G.,

Notice that not all variables are plotted here.

SD of Longitudinal Tracking Error,

SD of Longitudinal Tracking Error,

SD of Longitudinal Tracking Error,

SD of Longitudinal Tracking Error,

SD of Longitudinal Tracking Error,

initial 60-second period of the l-peak

SD of Lateral Tracking Error, Static-~G.

This is done mainly for practical

reasons. For example, the Commanded Gz for the 5-peak trajectory was an exact replica

of the l-peak case. The SD of this variable is of no great consequence since it is

virtually zcro. Also, the stick inputs in both axes were unreadable from the supplied

tapes. These variables, however, are of minor

The next step in the processing of the ensemble data was statistical analysis.

interest in the modeling process.

Since the air-to-air experiments were performed under two experimental conditions

(Static-G vs. Dynamic-G), statistical tests had to be employed in order to detect
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statistical difference among the ensemble means and variances. For convenience, only
the first 60 seconds of the l-peak trajectory are considered, but the results can be
generalized tor the other target profiles. The following hypotheses were examined:

(1) Longitudinal tracking error ensemble means are equal under both experimental

conditions. (Welch-test+) (Figure 30).
(2) Longitudinal tracking error variances are equal under both experimental
conditions (F-test) (Figure 31).
(3) Same as (1) for the lateral dato (Figure 32).
(4) Same as (2) for the lateral data (Figure 33).

Application of the statistical tests and inspection of Figures 30 - 33 unveils

the following:

a, We reject hypothesis (1). A comparison of Figure 30 with Figures 7 and
29 (rarget's G-profile (GT) and attacker’s attained G (GA), respectively)
shows that there is a significant difference (P<.05) between the means during
active éT (12-18th second of the run) and during high GA (around the 30th
second of the run) periods.

b. We reject hypothesis (2). It is evident that the variances are significantly
different (P<.05) during a part of the active éT period (l1-16th second) and
during most of the period that immediately follows the peak G interval.

¢. We fail to reject hypothesis (3). This result is obvious since there is no
target input in the horizontal axis. Also, the acceleration forces are

perpendicular to this plane.

fIn order to test the null hypothesis of equality of means, one would normally use

the t-test only when equality of variances is assumed. In our case, however, the

null hypothesis does not assume to deal with the same population, since the variances
prove to be significantly different (see (2) and (4)). In such a case Welch test is
usually employed. In the event, both t and Welch tests gave almost identical results.
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d. We reject hypothesis (4) (P<.05). A significant difference between the
ltateral tracking error variances is evident (Figure 33).

An inspection of the aggregated data indicates the following.

1. In general, the quality of the data is excellent. There is a sufficient
number of runs to form a '"'good" ensemble average. Moreover, unlike the
previous High Acceleration Cockpit (HAC) studies, the averages are relatively
smooth, tend to be more believable statistically, and provide a good corner-
stone for G-modeling efforts.

2. The G vs. no-G comparisons of the longitudinal tracking errors and of the
standard deviations (Ep(t) and Bep(t),respectively) show that the magnitudes
of ;P(t) are not very different. There is, however, an increase in oep(t)
for the G-present versus the static runs. This is in agreement with past
acceleration research wherein performance decrements are observed with sustained
G-stress.

3. It is noted that the effective time-constant of Ep(t) in going from the last
7C peak to the 4G tracking phase is smaller in the static vs. the dynamic
runs., Thus, the time required for Ep(t) ~ 0 is longer with the G-stress
present. Similar time-constant differences can be observed in the oep(c).
Ihis slower pilot response is again compatible with previous G-stress results.

4. The static tracking Ep data for the l- or 5-peak trajectory show a tendency
for the error to return towards zero immediately following a target pull-up
maneuver. Thus, the peak (negative) error exhibits a positive slope tendency.

kR 'he same Ep(t) tracking data for the G-stress case show a diametrically
oppused trend! During the peak error period there is a further lagging

trond inthe subject 's response, i.e. the error decreases. This tendency was
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noted in the earlier HAC data, but could not be confirmed as being statisti-
cally significant. Indeed, it was suggested by some that this tendency was
due to pilot anticipation of the target's upcoming pitch-rate reversal.

This explanation is not borne cut by the new data, however. As we follow the
ensemble average of Ep(t) through the 5 peaks this lagging tendency becomes
diminished. If there were pilot anticipation it should have shown up through-
out the run, possibly becoming more pronounced on subsequent peaks. Instead
we see the opposite trend. It appears that the person may becoming "acclimated"
to the repetition of G-stress and local performance is improving. Put another
way, the degrading effects of the G-stress are possible being absorbed--the
pilot's G threshold might actually increase.

The results do not appear to be tainted by the lateral axis control tasks.

On the contrary: a valuable insight into the effects of G-stress on pilot
performance is gained by the inclusion of this secondary task. The lateral
tracking error means (Er(t)) are not substantial, which is natural as there

is no target input in this axis. The standard deviation (Oer(t)) magnitudes,
however, are worth noticing. 1t is readily evident that cer(t) in the G-
stress condition is much larger. This is a testimony to the thesis that

there is a substantial performance degradation when subjected to sustained
G-stress.

It appears that the Attained G profile is a delayed and filtered version of
the Commanded G. This is because of the slow dynamics of the DES, which

can be approximated by a first order low-pass filter, with time constant ~ 4.5

secC.




2.3 Modeling the Longitudinal Tracking Task

2.3.1 Application of the Optimal Control Model

The Optimal Control Model (OCM), modified to treat deterministic target motion,

assumes the system dynamics
=
x (t) A x (t) +b 6, (t) + F z(t)

(2.32)

y(t) C %, ()

where Ao,yo,ﬁo and Co are the pertinent system matrices, x(t) is the system state
vector, 6A(t) is the elevator deflection and y(t) are the observations available to
the human operator (HO).
One of the difficult aspects of the modeling is the choice of state variables.

The criteria are

1. o and q for both aircraft should be retained as states.

2. The equations should be simple.

3. Other variables such as Gz’ ep, r, etc., should either be states or linear

combinations of states.

4, No absolute (i.e. inertial) angles may be states

5. The rates ép and r should be combinations of states.+
The last criterion indicates that a relative coordinate system is to be used.

After considering numerous possibilities, the following choices were made

+
This condition is needed for subsequent pilot modeling,
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=07 g

Dif ferentiating these quantities gives

QR ~

QR > Q:RP R =

(98]

T T
+
X, Mq X, + MG GT

Target dynamics

Xt %
x, + Mg X4 + Mg GA
Attacker dynamics
X, ¥ %y ;
- x)

v
+p (¥ = x, + x5)

(2.33)

(2.34)

The pilot observes the error ep(t) and aspect angle r(t), plus their rates of change.

Therefore
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Also note that

. A
o= Yy = - v 729 ¢ .
G, = Vvy RN (2.36)

1n order to simplify the modeling process we sought a reduced~order version of
the model. Therefore we assumed that the attacker and the target aircraft flight

path angles, Yy, and y._, equal GA and BT, respectively. Note that in this situation

A T

the state variables X, and X, can no longer be regarded as o, and Qs since, strictly

speaking, &A =y s 0. However, the 2nd order short period attacker dynamics remain
as in Equation (2.34). The assumption Yy T GA modifies only the equation for Xgs
IS
. . '. Y
=8, -L_ = - =(6_ -8
X x3 = p Op =9
(2.37)

The result of the target simplification is that state X, does not enter the system
equations, except for the target dynamics. If the explicit 2nd - order response of
the target is not important for modeling, then it is convenient to replace the equation

for x1 with

5(1 = z(t) (2.38)
where X = qT(=§T) and z(t) is the target's commanded flight path angle acceleration
(i.e. pitching moment).

Taking these simplifications into account and redefining states to account for

omission of Xy we find
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0 0 0
0 M o o 0 M 0
q a 5
- A
x 0 1 ZOl 0 0 x o+ 0 éA + 0 z{(t)
-1 1 0 0 0 0 4]
0 1 0 v/D 0 0 0
r - (2.39)
0 0 0 0 1
0 1 0 v/D 0
y = X
- 0 0 0 -1 1
1 0 0 v/D 0

These modeling assumption are in accordance with the simulation setup at AMRL.
There is a subtlety involving the vertical acceleration Gz: while it is always
true that Gz scales with YA’ it will not scale with aA in this case. But since

YA =, the vertical Gz force should be

Gz = VqA (2.40)

Therefore, the vertical acceleration of the target aircraft --in g units-- is

Gp(t) =

0v te

V. AU
YT-qu s X1° (2.41)

and the vertical acceleration commanded by the attacker is given by

<

c = —
Gy(t) =

L aa(E) + 1= ‘é x,(t) + 1 (2.42)

Because of distributed dynamic lags, nonlinear effects, etc., the actual accelera-
tion, GA, attained on the centrifuge, and hence that felt by the pilot is approxi-

mately
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G, = C(s) c;, (2.463)

approximates the DES' transfer function.

where C(s) = IIZ£§Z

2.3.2 G-Submodel for Longitudinal Tracking Task

The OCM assumes that the well-trained and well-motivated human operator adopts
an optimal control strategy, subject to his various psycho-physiological limitations.
The task of correctly specifying these limitations along with the resultant control
strategy is not always easy since they depend heavily on environmental and experimental
conditions. In the case at hand, the environmental condition is the level of G-stress
the human is subjected to. Below we describe the major human limitations that are of
concern in our modeling efforts.
Uperator Time Delay: The various internal time delays associated with visual and
central processing are represented by an equivalent time delay, 1. The sensitivity
analysis that preceded the modeling phase had not uncovered any particular trends
in the model predictions. It proved to be largly insensitive to this parameter. There-
fore, the nominal vialue of T = 0.25 seconds was chosen for the Static-as well as for

the Dynamic-G condition.

Threshold Effects: Nonlinear threshold effects associated with human information
processing are the visual and the indifference thresholds (not distinguished by the
model). We therefore associate with each displayed variable yi(t) a visual indifference

threshold level, a;. Thus, the (delayed and noisy) perceived signal is

= - + - i= 4 2.44
ypi(t) Foly;(e-D) 1] vyi(t T) i=1,2,3, ( )
where v i(t) is assumed to be a white-Gaussian observation noise (see the following

paragraph), and the threshold function Fi(') is
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LA
vl + li yi d[
Fo(v) = 0 -a, < b =1,...
1i(/) LTy < ay i=1, A
- <
Yy a; a; < v, (2.45)

Since v(t) is assumed Gaussian, we apply here the concept of the Random-Input-
Describing-Function (RIDF) to statistically linearize F(-) [43]. The approximated

perceived observation is given therefore by
= - + - i= .
ypi(t) Niyi(t T) vyi(t 1) i=1,2,3,4 (2.46)

where Ni = Ni(ai,yi,ayi) is the i-th effective display gain, vy being E(yi) and

a, were determined

Tod being yi’s standard deviation. The nominal values of a,, a3, a,

from the experimental setup and the displayed target size:

a, = 2mrad/sec, ay = 50 mrad a, = 25 mrad/sec

In both experimental conditions these values remained unchanged. The choice of the
indifference threshold on the tracking error, ars was a more subtle task, and it is
discussed later in the section. 1t will be seen that a is heavily dependent on

the C-stress level the tracker is subjected to.

Observation and Motor Noise: The various sources of inherent human randommness are
represented by observation noise, v , and motor noise, V5' These zero-mean white

y
noises mainly account for errors in observing displayed variables and in generating

control signals. The observation and motor noise covariances are
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-2 2
[yi(t) + Oyi(t)]

vyi(t) = ﬂpyi fi i=1,...,4 (2.47)

Vé(t) = Tog -+ cov[éA(t)] (2.48)
where

Dy(°5) = observation (motor) noise ratio coefficient

fi = fractional attention allocation to indicator i

The nominal values for the noise/signal coefficients were

o -21.5 dB i=1,2,3,4

yi

-18.0 dB

1]

Ps
These values were applied to the Static-G condition. In the Dynamic-G, pyi remained
unchanged but the motor-noise ratio coefficient, 05’ had to be increased by ~ 40%
(to -16.5 dB) to match the empirical data, yielding a 407 increase in the motor
noise, Vé(t).

Since there are four observation channels -- two for the longitudinal axis
(ep(t) and r(t)), and two for the lateral (er(t) and ¢(t)) -- the fractional atten-—
tions are assumed to be evenly divided among them. The result is fi = 1/4, which
increases the effective observation noise by 6 dB.

One may notice that in all the covariance propagation equations of Section 1.4,

1

which involve Vy = diag [vyi]’ (Equations (1.18, (1.30) - (1.32)), only C'V; c

appears., If we let

N = diag (Ni) (2.49)
and

v, it) = col [vvi(t)]' (2.50)
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then Equation (2.46) becomes
t) = NCx(t-t1) + t 2.51
zp( ) x(t-T) xy( ) ( )
It can be seen, therefore, that the matrix C has to be modified to NC. We preferred,

however, to modify Vy viz.,

vl . wvly . (2.52)
y y

The mathematical equivalent is,

ypi(t) =y1(t~r) + vyi(t) (2.53)
[§§(t) + 0211

V (t) =mp et (2.54)

vt yi £, - Nf

which corresponds to Equations (1.4)-(1.5). This interpretation of the visual channel
is very significant. The net effect of the nonlinearity-equivalent gain N1 is to
< 1. 1In fact, Ny decreases with

It will be seen that the tracking error indifference

increase Vyi(t)’ since from RIDF theory, 0 < Ni

increasing threshold level a,.
threshold, a, , increases with G, thus decreasing Nl(al), which in turn increases the

observation noise covariance of the tracking error, Vep(t) = Vyl(t).

Neur .motor Time Comstant: Although it has been found that the model is quite
insersitive to variations in the neuromotor time constant TN, we have chosen to

adopt the values of 1, = .18 sec for the Static- and T, = .2 sec for the Dynamic~G

N N

condition. This parameter, which governs the first-order lag in the human control
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mechanism, has proven to be a key parameter in the steady-state G-model (Chapter [II).
A similar difference in the time-constant values between the two experimental condi-

tion was identified there.

Comtrol 7ains: In computing the optimal gains adopted by the human, we minimize the

following cost functional,

T

[
|

_ o1 2 Y ; .
J(éA) = %}m T E' [qe ep(t) + q, ep(t) + g 6A(t)] dt (2.55)

>0
(o}

where a0 4, and g are the (constant) weighting coefficients. The control rate

weighting g is completely determined by the choice of 1 but 9 and q; are subjective

N’
and represent the operators control strategy and error tradeoffs. We assume qe=qé=.l
in both conditions since in the longitudinal tracking task the subjective importance
of the pitch error rate is no lesser than that of the pitch error.

In the Repetitive-G experiments, there were two major factors that influenced
the performance of the subjects:

(1) The specific instructions and training that guided the subjects in their

task;

(2) The attained positive acceleration (GA) which resulted from the commanded

input signal (G;).

It is clear that coaching the subjects to adopt only certain prespecified control
actions, and/or constraining their permissible command levels, should profoundly
affect tracking performance. This was demonstrated by Brown and Collins [26] in
experiments whereby subjects were required to perform a tracking task similar to

ours. Prior to certain runs the subjects were instructed to fly the simulated air-
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craft in a coordinated fashion, i.e., to maintain lateral acceleration at a minimum.
The results proved that there was a significant difference in performance between
these runs and those not preceded by the specific instructions.

The effect of such instructions is reflected in the human's control strategy,
i.e. in the weightings in the cost functional J(-). In our experiments, the subjects
were instructed (and trained) to track well, i.e., to minimize the tracking error,
but onlv during the last stage of the run, namely, from the onset of the 4 G stress
period. The subjects were scored only during the final 90 second period of the 4 G
plateau. Preceding the 4 G period, the subjects were instructed to merely "keep the
target on the screen.”

One might well conclude from this experimental setup that the subjects' error

indifference threshold level, a,, was changing during the tracking period, and that it

1
had a4 profound effect on the relative error/error-rate weightings in the computation
of the optimal gains. One plausible error threshold time history is shown in Figure
345, Figure 34 refers only to the l-peak trajectory but similar threshold time-
histories may be used for the other trajectories. During the first tracking interval,
al(t) = thl = maximum angular error that corresponds to the graphics' total screen
size = 150 mrad. During the GT==4 G plateau al(t) = tho = minimal tbreshold level
inlierent to the human, and dependent on the size of the pipper image simulated on the
screen (= 20 mrad). We assume that the threshold changes gradually around ts = 30

sec, where GT decreases from 7 to4 G. These assumption were applied, regardless of

the experimental condition (i.e., for both Static- and Dynamic-G).
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With the above in mind, coupled with Equations (2.46) and (2.55), we replace the
displayed pitch error ep(t) in the cost functional J(*) with the perceived error,

namely,
ep(t) - “1(“1(‘)’ ep(t), oep(t)] ep(t) (2.56)

where

ep(t) = yl(t)

(2.57)
°ep(') - °y1(‘)
Thus, the cost functional to be minimized is now
(] |
' - 1 2 2 L2 2
J (6A) %}: T El/ (qu1 ep(t) + q; ep +g SA] dt‘ (2.58)
(]
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The error rate display gain is not included in J'(-) since we assume that the error
rate threshold level, a, is negligible (= 2 mrad/sec) and time-invariant. This
approach of weightings modification in the cost functional has been originally
suggested by Kleinman and Baron {43], and it extends the preliminary modeling efforts
of Korn et al [44].

One may argue that this approach has an inherent serious drawback. Since a, is
now time dependent, the error weighting would vary in time which in turn implies that
the optimal control gains would have to be computed continually. This would not be
feasible. However, it has been found that only the error (XS) gain depends strongly
on the error weighting, and the remaining gains are virtually unaffected. With this
fact, a functional relationship between the error gain and the error weightinu has
been found, and successfully applied.

The indifference threshold on the observed tracking error is further affected by
the G-stress. We postulate that the human would tend to decrease the importance he
assigns to the tracking performance when subjected to sustained physical stress.
From Figures 17 - 22 it is apparent that the subjects exhibited a lagging tendency,
which increased during the peak-G periods. The hypothesis is, therefore, that the
acceleration stress would tend to increase the tracker's indifference threshold
associated with the tracking error. Alternately, he would become less indifferent
to his own psycho-physiological response.

To incorporate this threshold effect in our G-model we adopted an ad-hoc formula,

such that,

2 .
al(t, GA) = al(t) [1 + pg-max 0, G, - Gmin)] . (2.59)

A

69




where GA = GA(t) is the subject attained Gz (Equation (2.43)) and “min = 4g = minimal
GZ level, below which human performance is assumed not to be affected significantly.
(We assume, of course, that the subject is wearing a G-suit). The value of the parameter
ﬁg that gave the best data-model fits was Og = ,5,

The e¢ffect of the increase in a, under Gz—stress is twofold:

1. The equivalent display gain, Nl’ decreases under G-stress, further reducing
the effective weighting on the tracking error, while the error-rate weighting
remains unchanged. This, in turn, reduces the control gain on the error that
is computed from Equation (2.58).

2. The decrease of Nl increases the effective observation noise covariance
associated with the pitch error (Vep(c)) as can be observed in Equation

(2.54).

2.3.3 Modeling Results of the Longitudinal Tracking Task

A good performance model is one that satisfactorily validates experimental data
and can be applied reliably in a predictive mode. Moreover, it should be applicable
to a wide range of manual control tasks. The OCM has proven its ability to model
the air-to-air compensatory tracking task as demonstrated by the excellent data
matches that follow.

In order to demonstrate the model predictions of the pertinent variables, we
consider the l-peak trajectory as a representative case. The 0O-peak profile is of
no real interest because of a limited target maneuver and the low G levels, and the
5-peak profile is basically a replica of the l-peak as can be observed from the

ensemble data. Moreover, most of the final period of constant 4 G can be discarded
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since it is a period of zero dT (z(t) = 0). Therefore, it is sufficient to consider
the first 60G-second period of the l-peak profile, in order to illustrate our modeling
results,

In the following discussion we present the model prediction time histories.

These are followed by figures which show the model-data comparisons.

e t ures 35 - 36: Mean and SD of tracking error, Static-G.
e HFloures 37 - 38: Mean and SD of tracking error, Dynamic G.
«  Flreure  39; Commanded-G, Dynamic-G condition,

® Flgure 4uy: Attained-G profile.

Comparisons:
® Fivure al: fracking error mean, Static-G.
e fFigure 4272°¢ Uivacking error SD, Static-G.

s  Figure 43: [racking error mean, Dynamic-G.

e flgure 44: Tracking error SD, Dynamic-G.
e Fivure 45 Commanded G, Static-G condition.
e figure 46:  Commanded G, Dynamic-G condition.

2.3.4 Discussion

The data-model fits are excellent. It should be emphasized that the base-line
OCY parameters were unperturbed from their nominal values in the no-stress condition.
Only in the G-stress situation was it necessary to formulate a G-submodel. To
recapitulate the G-stress performance model, the model predictions have to be

expounded:
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(1)

(

ro
~

(3

One can observe a slower recovery of the tracking error during the transition
period betweenthe 7G peak to the 4G final plateau, when under G-stress.

This model prediction is attributed to the increase in the indifference
threshold on the tracking error, al, in the Dynamic-G condition. The major

effect of increasing a, is to decrease Nl(al)’ which in turn decreases the

1
relative weighting on the tracking error in Equation (2.58). The resulting
feedback gain on the tracking error is lower in magnitude, allowing the
introduction of larger tracking errors, thus permitting a slow error recovery.
Notice (tigure 40) that the peak Attained-G level occurs during this transi-
tion interval.

A secondary effect of the increase in a., under G-stress, is to effect higher

1
observation noise Vep(t) (Equation (2.54)).

Another indication of performance degradation under G-stress is larger
standard deviations of tracking error. This is demonstrated in Figure 38.
The model predicts a larger and persisting tracking error variance in the
Dynamic-G condition, which 1s attributable to higher motor-noise. Indeed,
a 407% higher motor noise (o6 = -16.5 dB in Dynamic-versus 06 = -18 dB in
Static-G) was necessary to fit the ensemble tracking error SD. (From the

covariance propagation equations of Section 1.4, one can see that increasing

the motor-and/or observation noise results in higher variances.)

The modeling assumptions prove to be in excellent agreement with past G-stress

performance research, as summarized in Section 1.2. Virtually all of these efforts
conclude that the performance decrements are ascribed to larger motor and observation
noises, as well as to such psychomotor response as tolerating larger tracking errors

when operating under sustained acceleration stress.
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2.4 Modeling the Lateral Tracking Task

2.4.1 Application of the Optimal Control Model

Similar to the longitudinal tracking dynamics, the lateral task has to be

expressed in the state space,

120(:) Ax (t) + b 6 _(t)

(2.60)

1]

y(t) Cx (t)

where A , b and C_ are the system matrices of the lateral dynamics, x (t) is the

o’ —o o ~o
state and 6a(t) is the aileron deflection. Notice the absence of the driving terms
wo(t) and z(t). In accordance with the simulated roll dynamics as represented by

Gr(s) in Section 2.1.5, we define the state as

X = er(t) = lateral tracking error
- . =Y
X2 = er(t) D v
(2.61)
Xy = K(t) ¢
x, = K(t) ¥

It should be noted that these definitions are valid only when K(t) is constant or
slowly varying. This has been the usual assumption when considering time-varying
system parameters in pilot modeling efforts.

This 4-~th order system can be reduced to third order by combining the first

order lag of Equation (2.26), (1 s+1)-1, . ‘% the first order lag (TN s+l)_1 which

¢

is introduced by the neuromotor dynamics in the OCM. Thus we set
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N 1
= = 4+ — .62
Ny,equiv . Wt T T wT 553 (2.62)

in the subsequent modeling process, and the system then becomes

b 1 2
Xy = X (2.63)
. 1
Xy = K(t)éa(t)
where é;(t) = &, and STRST x3 are as defined previously. In matrix form, we
obtain,
0 1 0 0
. 1]
x = 0 0 1 X + | 0 (K(t) Ga(t) (2.64)
0 0 O 1

Note that K(t) enters only as a scalar multiplier on the control 6;(t). This
means that the control 6;(t) can be computed for K(t) = 1 and then adjusted for
arbitrary K(t) via inverse scaling. It will be seen that K(t) has an effect on
the pilot's additive motor noise. For notational purposed we define K(t)é;(t)=u(t).

The observations that are available to the pilot to minimize lateral tracking

errcr are

M = tracking error e(t)
Yy = %y = error rate, é(t)‘

(2.65)
Yy = x3/K(t) = relative roll angle, ¢

Y, = 3/k(t) = roll rate, ¢




"

The observation Y3 of roll angle is critical for the control task. If this inform-
ation is absent it is virtually impossible for a subject to control the K/s3 system.
The rule-of-thumb control logic of "keep your wings aligned with those of the
target aircraft" is testimony to this fact. The information Y4 is not very impor-
tant here inasmuch as the control signal u(t) is essentially "known.'" It would be

of importance if the target aircraft were free to move laterally.

2.4.2 G-Submodel for Lateral Tracking Task

Similar to the longitudinal tracking task, our modeling approach was first to
isolate the G-stress-dependent OCM parameters and cost functional components, and
then to determine the structure of that dependency. Below we list all OCM parameters

and indicate how they are affected by acceleration stress:

Threshold Effects: The threshold nonlinearities were applied here in a fashion
similar to that of Section 2.3.2. The nominal indifference threshold values on

Yor ¥q and y, were selected from simulation considerations as a, = 2 mrad/sec,

2

ay = 5 mrad, a, = 2.5 mrad/sec. These values remained unchanged in the dynamic condi-

4

tion. The threshold level on the observed lateral tracking error was chosen here, as
in Section 2.3.2, to reflect the pilot-adopted tracking strategy. In the nominal

static condition we select

et al(t) = thl = 35 mrad = maximum angular error allowable

t>ts al(t) = tho = 25 mrad = pipper radius.

In the G-stress condition th1 = 50 mrad, and the value of tho is unchanged. In the

presence of G-stress, there is assumed to be a further increase in the model's
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indifference threshold, viz:

a (t,6,) = aj(t) (1 + pg‘maxz 0, 6,6, )] (2.66)

A in

where G = 4g and p_ = .3 is chosen to match the 0 (t) = o _(t) data. The
m g er yl

in
rationale for this assumption 18 as before: under high G-stress the subject tends
to tolerate larger tracking errors. These, in turn, result in a lower relative

weighting on the error in the cost functional.

Observation Noise: This parameter was applied precisely in the same manner as in

the longitudinal case:

g .

- yi -
Vg (6) = o, FLN, i=1,2,3,4 (2.67)

The nominal py1 values are -21.5 dB as before, and fi = 1/4. Notice, however, that
the ;i term is absent from Equation (2.66) as there is no target input excitition,

and, strictly speaking, ;1 = 0.

Motor Noise: 1In the Optimal Control Modeling process, the control 6;(t) is generated

as

ot U ]
TN,equiv éa(t) + Ga(t) =L (t)x(t) + vu(t). (2.68)
ihe gains L(t) are computed via

L(t) = L*/K(t) (2.69)

where L* are the optimal gains corresponding to K(t) = 1. The quantity vu(t) is the
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human's motor noise. The motor noise consists of two parts: a purely additive com-
1

punent v:(t)' and a multiplicative component that scales with the control 6;(t).

Thus,
v (6) = 0 (v 20 + L) [8] (o) (2.70)

where *(t) and vuu(t) are assumed to be white and pa(t) is a known time function that

modifies the additive motor ncise covariance (see subsequent discussion). Multiplying
A

Fquation (2.68) through by K(t), noting Equation (2.69) and defining 6a(t)K(t)=u(t),

we obtain

X, = Aoﬁo + Eou(t) (2.71)

TN,equivh(t) +u(r) = -LY x(e) + p_(OK(EIVI(8) + £(0) [u(e) | (2.72)

Thus, the only effect of the gain K(t) is to increase the effective additive motor
noise component, the variance of which increases with Kz(t). The motor noise

covariance becomes therefore
, _,0 ) - 2 2 o
\u(t)—Vu(t)+npu(t)cov[u(t)] Da(t)K (t)Vu+ﬂou(t)c0V[u(t)] (2.73)

where wu(t) is the motor noise/signal ratio, and ﬂou(t) is identified as the covariance
of ©(t). The multiplicative part of the motor-noise scales with the effective control
u(t), which is convenient for modeling. The net result is as expected: A constant
motor noise input will have a greater effect on lateral tracking error during periods
of high pitch rate since the system sensitivity, K(t), increases as q = Q increases.

In addition, one has to consider the crossfeed effect in the manipulator. It

+ . .o
Notice that an additive romponent must be assumed here, as there would be
no other excitation to the system.
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appears that during the "active" target maneuver intervals (i.e., when éT = z(1)#0),
the additive motor noise should increase. During these tracking periods, the pilot

2 .
commands G, ~ .75 g/sec” (see Figure 27, t.[10., 17.34] sec and t-[27.34, 31.34] sec).

c
A
Because of this longitudinal control-rate, some additive noise is injected into the
lateral axis, introducing random lateral errors.
The above discussiun is relative to the interdependencies between the system
dynamics and the motor noise. The effect of G-stress on this motor noise remained
to be determined. In the course of the modeling work, it became apparent that model
predictions were quite sensitive to variations in oa and ou. Increases in these para-
meters greatly increased the magnitude of the model-predicted Ger(t). Large increases
in Oer(t) are observed between the static and the dynamic-G conditions (¥ivures 24,
26). We postulate therefore that G and/or G stress increases the motor-noise. In
a previous effort to model pilot performance under vibration stress, Levison [&44]
also needed to increase the motor noise to match the data. Although vibration is a
form of physical stress different from sustained acceleration, it is possible to
extrapolate from Levison's results to our study. The following approach was taken.
1. The nominal value of pu = ~18.0 dB. In the dynamic conditions we select
Ou = -16.5 in accordance with the longitudinal tracking task model.
2. 1In the static condition the nominal value of VZ = 1. (rad/sec)2 was chosen
on the basis of the manipulator dead-zone characteristics. In the dynamic
conditions Vﬁ = 2. The value of P, is nominally selected as 1.
3. Because of the crossfeed phenomenon we increase the motor noises at the times
for which z(t)#0. This is illustrated in Figure 47. Basically, ou remains

unchanged in the static condition but it increases to -13 dB under G-stress.
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Fig. 47 MOTOR NOISES IN THE LATERAL TRACKING TASK

In the static condition we set Py = 3 and in the dynamic pa = 10. These increases
reflect nine - and 100 - times higher levels of Vﬁ(t),respectively‘(see Equations 2.72
and /..3). This indicates, perhaps, that sustained acceleration stress enhances the
manipulator crossfeed effect.

fhe approach taken here modifies somewhat the prelimiary model of [45].
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Nowy mee oy Time Oomar it The model was found to be quite insensitive to variations
in the neuromuscular time constant, ‘N' The effective time constant used in this

studv was

IN,equiv. N t

Pepformopice Index:  The optimal control policy is that which minimizes the cost

functional
[ I
_opi 1 2 2 ] 2 2 N
J(u) Lim EI [qul(al)er(t) + qb¢ (t) + gu (t)] dt (2.74)
0

T-wo T
This is in accordance with the assumption that the subject weighs the perceived, rather
than the displaved, error. The weightings that were chosen to obtain the optimal
control gains were 9e = .01, q¢ = .1 in the static condition, and 9, = .01, q¢ = .25
in the dynamic one. Notice the much higher (t) weighting which indicates the higher
relative importance of the roll angle in the control. Also, it is evident that under
G-stress the relative weighting on er(t) ig lower than in the static condition (.01:.25
vs .0l:.1). The net effect is similar to that of increasing the inditterence thres-

nold: both decrease the control gain on the error, thus generating higher wer(t).

2.4.3 Modeling Results of the Lateral Tracking Task

An excellent indication of performance degradation under G-stress is the higher
magnitude of Oer(t). We observe that Oer(t) in the Dynamic-G condition is about 60
miliradiands during the peak G period, whereas in the Static condition it is about

3J0 mrads. The model reproduces these trends; the modeling results are illustrated in




Fivures 438 - 51, (All figures relate to the first 60-second period of the l-peak
tarvet protile.)

e iusure  as: SD of tracking error, Static G.

e fivure 39: SD of tracking error, Dynamic-G.

e Fblgures 5u - §) illustrate the model-vs-data comparisons of Oer(t) under

the two conditions.

2.4.4 Discussion

It is quite evident that the model reproduces the experimental data very well.
It should be emphasized that no modifications to the OCM nominal parameters were
necessary in the static condition. This reaffirms the validity of the OCM when
nominal conditions are considered. Similarly to the longitudinal task, the increase
in the model-predicted oer(t) in the dynamic condition is attributed mainly to the
increase in the human motor-noise, the lower error weighting in the cost functional,

and the increase in the tracking error threshold parameter.
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I11. FREQUENCY DOMAIN MEASURES OF HUMAN PERFORMANGE UNDER (- STRES:.

In Chapter II, the development of a "Time-Domain" G-nrodel is discusscd. Althonsh this
performance model is successful in the sense that it was validated bv the experimental
data, the information it furnishes is somewhat limited. [t is intrinsicallv incapable
of providing any frequency measures, such as powcr spectra, transfer functions, rem-
nants., In fact, this model is only effective in predicting pilot performance in
the presence of transients in the target profile; steadv-state analvsis is excluded.

It was imperative, therefore, to build a stationarv performance model that will
complement the nonstationary one. In this chapter, a steadv-state model or pilot
performance under constant sustained-G stress is presented. The experimental program
leading to this G-model development is still in progress at AMRL. Results of the
initial DES runs have become available and they comprise the data base for the
present model building effort. Three experimental conditions are cmployed, dand
are designated as (1) Static {(fixed-base), {2) Scmi-dynamic 50 open-loop stress: and
(3) Post-runs (static runs immediately following the semi-dvnamic condition). The
control task is compensatory tracking in the lateral planc. The target input excita-
tion is a psuedc-random signal (sum of sine waves), providing a rich set of measures
amenable to FFT analysis. This is discussed in detail in scetion 3.1, The perfor-
mance model is based upon the Optimal Control Model (OCM). Section 3.2 describes the
modeling effort.

The experimental data exhibit significant tracking performance decrements under
G-stress. The pilot's control remnant increases by as much as 5dbar some frequencies,
and his tracking RMS error increases by some 15%. 1In .ddition, the pilot's describing

function magnitude decreases by mnearly 1.5db, particularly in the post-runs condition.

TThis Chapter is based upon a 1979 CDC paper [48].
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The model reproduces these trends quite well, by properly adjusting its parameters.

A discussion of the empirical and modeling results follows in Section 3.3.
3.1 Experimental Design

The constant—Gz experiments that provide the data base for the modeling effort
reported herein were not designed as Gz experiments per se. In fact, they are
embodied in a larger experimental program designed to investigate the combined GZ—Gy
effects on pilots in the new Vectored Force Fighter (VFF) aircraft. The AMRL DES
centrifuge was the motion simulator used in these experiments. The subjects were
seated in the cab, which represents an aircraft cockpit, and was equipped with a
sidearm control stick. The visual tracking loop included a compensatory tracking task in
the lateral plane as shown in Figure 52. The display included a stationary gunsight

reticle and a target aircraft, represented by a dot.

CONTROLLED VEHICLE NOISE SHAPINWG
DYNAMICS FILTER
2 1.7 — 52 Wy (t)
s + 1] s + 1.7 s”+ s+ .5
CONTROL
u(t) DISPLAY
| MANIPULATOR pe—— Ho fae2lt)
59 DES
n{t) - target excitation signal wo(t) - white driving noise
ep(t) - vehicle pointing angle e(t) - tracking error = n(t) - ep(t)

Fig. 52 TRACKING TASK CONFIGURATION
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and solve the covariance equation

] 1
XA +AX +EWE =0, X 2E{xx} (3.4)
s's s's ~-s s s =s5=s
we obtain W = .36, which corresponds to the specified On.

The random signal n(t) was simulated by combining 11 sine waves into psuedo-

random forcing function,

11
n{t) = 2 Ai COS(wit + Gi) (3.5)

i=1

tor each run, the phases, Gi, of the sinusoids were randomized in order to eliminate
cognitive response, and the frequencies, wi’ were chosen to span the range of the
human response (.15 : 15.57 rad/sec). The amplitudes, Ai’ were selected to approxi-
mate &nn(w). A summary of the frequency components comprising the pseudo-random
signal is given in Table 1. A detailed description of how to generate the approxi-

mated amplitudes can be found elsewhere [46].

No. Frequency (rad/sec) Amplitude
1 0.15 0.2376
2 0.38 0.2404
3 0.69 0.2023
4 1.00 0.1330
5 1.46 0.0854
6 2,22 0.0482
7 3.30 0.0259
8 4.76 0.0147
9 7.29 0.0081

10 10.51 0.0044

11 15.57 0.0025

Table 1 SUMMARY OF FREQUENCY COMPONENTS
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The VFF is designed in such a way that the pilot's lateral commands generate a
transient direct side force, i.e., a Gy acceleration. In order to simulate the desired
Gy levels, it was necessary to centrifuge the subjects to an (almost) constant Gz,
and to rotate the DES cab (in conjunction with the pilot tracking commands) to produce
an off-normal G component. The present study deals only with the constant Gz runs
(5G level) and no Cy acceleration. The tracking task was designed to be used both in
the present constant GZ study as well as in future (closed-loop) Gy applications.

This design constrained the driving signal and the plant dynamics to parameters

comensurate with the DES cab's bandwidth. The design specifics are listed below.

Target Input Excitationm Signal:  The target driving signal was chosen to be a second
order colored noise n(t) with the power spectral density
__+25W (3.1)

¢ (w) =
mn W+ .25

and with the prescribed RMS value of On = E{nz} = ,3. Such noise is normally generated
as the output of a linear time invariant system, T(s), driven by white noise wo(t)

with E{wg(t)} = W. For the given ¢nn(m), this system is

T(s) = —2~—i—~ (3.2)
s + s+ .5

which is nothing but a Butterworth filter with a cutoff frequency of .707 rad/sec.

If we represent T(s) in the state space,

X =Ax + W (t)= . + - w () (3.3)
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Somtrelled Vehiele Dynamies: The chosen plant had a second-order, overdamped trans-
fer function, which was dictated by the DES cab dynamics, viz.,

_ 3.4
G(s) = m (3.6)

Rwi Length: In order to comply with medical safety requirements, the run duration
had to be limited. A run length of 81.92 seconds was chosen; with a sampling period

of 40 msec, each run resulted in 2048 datum points, facilitating the FFT analysis.

Indeyendent Variables: There were three experimental conditions (excluding the
Dvnamic Gv case).
1. "Static" - The centrifuge cab served as a fixed-base simulator (no Gz~stress).
The subject's stick inputs effected a displayed tracking error with no
actual acceleration.
2. "Semi-dynamic" - The centrifuge cab served as a moving-base simulator. The
pilot nominal GZ level was 5G. As in 1, the subject's control corrected the
displayed tracking error, but no off-normal accelerations were present.

3. "Post-runs" - Same as 1, but these runs immediately followed condition 2.

Each session included two static runs, followed by two semi-dynamic runs,
immediatelv followed by two post-runs, By this arrangement it was hoped to uncover

some vf the sustained-, as well as the accumulative-G effects on tracking performance.

Perlicutions: Five subjects participated in a total of nine sessions. With two runs

per condition per session, 18 runs per condition resulted.
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Data Analysis: Numerous quantities, ranging from tracking error to heart rate time
histories were recorded, but only a subset of these quantities was required for the
performance model. The measurements that are of consequence to the modeling effort
were the tracking error, e(t), and the pilot stick command, u(t).

When analysing the experimental data, the following steps were taken:

1. The raw data of each of the indiv‘Aual runs were transformed to frequency
domain via an FFT program, which produced the following quantities (evaluated
at the input frequencies):

(a) Ensembles of the individual power spectra of the tracking error, e(t),
and of the pilot control, u(t)(@ee(w)and ¢uu(w), respectively).
(b) The spectra ¢ee(m) and ¢uu(w) are given in two parts, the input -

correlated and the input - uncorrelated:

¢ee(w)

c uc
boew) + ¢ (W)

(3.7)

q>Ul‘l(m)

0 (w) + 0" (w)
uu uu
(¢) The cross-power-spectral densities of e(t) and of u(t) with the input
signal n(t) (¢ne(jw) and ¢nu(jw), respectively) were computed, and an

ensemble of the equivalent pilot describing functions, H(jw), (magnitude

and phase) was obtained

¢nu(jw)

JLILC (3.8)
¢>ne(3w)

H(jw) =

(d) The pilot control remmant, R(w), was next obtained from the ratio of

¥ (w) to ¢ (w),
uu uu
R(w) = (3.9)
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This quantity is crucial in any performance-modeling efforts. As
performance degrades under G-stress, it is reasonable to expect an
increase in the remnant's magnitude, indicating perhaps involuntary
motor activity. This, indeed, is the case in the present work, as
seen in the subsequent sections.

(e) 1In addition, the performance '"scores," i.e., the RMS values of e(t)
and of u(t) (or alternately, the total power in @ee(w). and Quu(w) were
computed. These quantities prove to be indicative of pilot-tracking
performance, as they increase under G-stress, as might be expected.

2. The data were ensemble averaged, utilizing techniques similar to those of
Section 2.2. The final product was first- and second-order statistics of:
a. Pilot describing function, H(jw) (magnitude and phase),

b. Pilot remnant, R(w),

c. RMS scores.

These results are illustrated in Figures 53 - 61 and in table 2.

Discussion of the experimental, as well as the modeling results follows in

Section 3.3.

3.2 Modeling Approach

The base-line model adopted here was the 'Steady-State" OCM, as explained in

Section 1.4.2.2. The system being controlled is described by the state space equation

% (t) = A_x (t) + b u(t) +Eu (t) (3.10)
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where the tirst two states are associated with the input noise shaping, u(t) is the

pilot's control input and wo(t) is a zero-mean white Gaussian nolse, with

E{w (t) W (3)}) = W8(t-0), W= .36 (3.11)

O

The displaved variables consist of the paired tracking error/error rate, viz.,
y(t) = =C x (t) = = x (t) (3.12)
= . o-o Zo

The OCM assumes that the well-trained and motivated human operator adopts an
optimal control strategy, subject to his inherent psycho-physiological limitatioms.
The mathematical interpretation of this statement is that the pilot, in the case at

hand, will minimize the following cost functional:

T
‘ . 1 2 .2 )
J(u) = E Lim = (e“(t) + gu (t)dt , (3.13)
|7 |
0
where g is the relative weighting on the control rate. Obtaining the optimal control

law is accomplished by solving the steady-state Riccati equation pertaining to (3.13).

The well- known solution to this problem is

. L} ~
TN utu = -Eopt §o(t) + vu(t) (3.14)
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where TV is the human operator (HO) neuromuscular time constant, v (t) is an additive
u

&

motor noise, L)pt is the optimal control gains vector and xo(t) is the estimated

state. There is a one-to-one correspondence between q, and T usually the latter is

N’

specified and q, is adjusted accordingly.

Humen Limitations: The neuromuscular time constant, 1 is just one of the OCM para-

N,
meters that reflect the human inherent constraints. It represents the human's neuro-
motor bandwidth limitation in generating the control input.

Another human constraint stems from the fact that the human estimates the system

state on the basis of a delayed and noisy perceived information,

ypi(t) = yi(t-T) + vyi(t—T) i=1,2 (3.15)

where

human's lumped time delay,

—
li

Vvi(t) = observation noise of the i~th indicator.

The observation (or sensor) noise Vyi(t) is a zero-mean, white Gaussian noise with

covariance

E {vyi(t) vyi(O)} = Vin(t~0)
(3.16)

V. = npy E{yi(t)}.

yi i

and “yi is the noise/signal ratio of the i-th observed variable.
The driving motor noise of Equation (3.14) is also zero-mean, white and Gaussian.

Its covariance is
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E{v (t)v (o)} = vV §(t-0)
u u u (3.17)

_ 2
v, = Te, E{u " (t)} ,

where . is the motor nosie/signal ratio.

In the modeling work, TN, T, pyi’ and Du are of major interest, since these are
the only parameters that need to be tuned in order to match the experimental data.
A comprehensive OCM parameter identification program that was developed at the
University of Connecticut [47] facilitated this task. The application of this

identification procedure to the case at hand can be found in the Appendix. The

experimental and the modeling results are discussed in the following section.

3.3 Results and Discussion

Figures 53 and 6! present the model-data comparisons for all three condi-
tions. The data are represented by the ensemble means and the standard deviations
at the input frequencies, and the model predictions -- by the continuous lines. In
addition, the predicted RMS ccntrol and tracking error scores are compared with the
experimental ones in Table 2. The following observations can be made, regarding

the empirical data:

Describing Function Magnitude: The highest magnitude among the three conditions is
observed in the static case. It is 0.5 - 1.0 dB larger than the magnitude in the
semi-dynamic condition, and 1.0 ~ 1.5 dB larger than in the post-run condition.

These differences are present at aluost all input frequencies.

Describing Function Phase: Here, no significant differences are apparent among the

three conditions.
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Jomtrol Remmant: The most pronounced difference exists here. Whereas there is
hardlv any difference in the remnant between the static and the post-run conditions,
the semi-dynamic case (Gz - stress, Figure 3.7) exhibits an increase by as much as

3 to 5 dB throughout the entire frequency range.

Tracking Scores: Table 2 lists the empirical RMS values (+ one standard deviation)
of e(t) and of u(t) for the three conditions. The following observations are made:

l. The lowest RMS error value is in the static condition, and the highest--in

the Gz—stress condition.
2. The lowest control levels were applied during the post-runs, and the highest--
during the GZ runs.
~iwures 53 through 61 show the modeling results, which are the major achievement

ot this effort. The experimental data validate the model in all three cases, through-
out the entire frequency range. Some discrepancies exist at low frequencies, between
the phases in particular: the model is unable to reproduce the phase droops below
0.7 rad/sec. This has traditionally been the case in all past modeling works.

The model predicted scores match the experimental RMS values as well. The pre-
dicted scores, both error and control, deviate no more than half a standard devia-
tion from the ensemble score means.

Table 3 summarizes the OCM parameters that were identified from the data. It
is apparent that the operator's motor mechanism is impaired by Gz-stress. The
highest motor noise/signal ratio, pu, was identified for the semi-dynamic condition.
The increase in ou under G-stress is by as much as 4.5 dB. This result is in excellent
agreement with past psycho-motor research [13, 19], and may be attributed to a phenomenon
such as tremor. It is quite interesting, however, that the post-runs effect lower

motcr noise.
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Moreover, the observation noise/signal coefficient, Oe’ under G-stress increascs
from -19.6 dB to a level as high as -15.1 dB. This again is consistent with past
research concerning G-effects on vision. The increase DC mav be accounted for by
decrements in visual acuity under G-stress, blur, etc., as reported by CGrether {9]
and many others. Alternately, this increase in fly can be ascribed to a decrease in
the attentional allocation or to an increase in the indifference threshold on the
observed error due to G-stress, or both. This is readily evident if we replace

Equation (3.16) with

ﬂpeE‘ez(t)}

Ve = TN (3.18)
e e
where fe < 1 is the fractional attention allocated to e(t). The term
2
N =N [a, Ele"(t)}] <1 (3.19)
e e e -

is a statistically linearized function, arising from a thresholded error observation
with threshold level a, (see [43]). It has been shown [44, 45] that the error in-
difference threshold is indeed affected by G-stress.

The trends in P, are not as clear as in P but the model proved quite insensitiv:
to the former. Therefore, oé may be assigned a prescribed nominal value.

Another parameter which is affected by G-stress is the lumped time delay, T.
There is some increase in [ in the semi-dynamic condition but it decreases slightly
in the post-run case. The increase in human reaction time under G-stress is again in
accordance with previous research (e.g. (13]). The neuromuscular time constant, e
increases both for G and post-G runs; this validates the hypothesis of accumulative

Gz—effects. This decrease in the human control bandwidth, combined with a significant
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decrease both in the describing function gain (Figure 59) and in control activity,
(Table 2 - post run condition), suggest a hystersis effect of fatigue induced by

an accumulated Gz—stress.

FABLE 2 - RMS SCORES

. e ———————— e ey - ——

SCORES TRACKING ERROR, e CONTROL, u
(RMS)

CONDIT ION EXPERIMENTAL | PREDICTED | EXPERIMENTAL | PREDICTED
—— - - .
STATIC .093 + .04 .090 .37 + .10 .32
G, -STRESS .107 + .015 .102 .42 + .18 .33
POST-RUNS .095 + .021 .088 .33 + .09 .29

| ORI, —

Table 3 -~ MODEL PARAMETERS

CONDITION ]
PARAMETERS STATIC Gz - STRESS POST-RUNS
S dB -17.5 ~15.3 -20.1
Vg 0 dB -19.6 -15.1 -21.3
Pe s dB -29.5 -30.8 -24.5
T , SEC .257 .266 .236
TN’ SEC .159 .176 .165
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LV____ CONCLUSIONS

1t has become a well-established fact that linear acceleration stress effects
substantial degradation in pilot performance. The results of the compensatory
tracking/sustained acceleration research program, jointly undertaken by Air Force
Aerospace Medical Research Laboratory and the University of Connecticut-CYBERLAB,
substantiates this contention. Statistical analyses performed on the experimental
data prove that significant differences exist between Gz versus no—Gz—stress condi~-
tions. The acceleration stress data exhibit trends which are clearly a manifestation
ot performance impairment:

1. The variability in the tracking errors increases significantly under Gz—stress.
This is demonstrated by high levels and enduring periods of tracking-error-
variance time histories, and by larger RMS tracking scores.

2. Pilot's involuntary motor activity increases in the presence of sustained
Cz—stress. The data show large increase in the input-uncorrelated control
power, and higher control RMS values.

j. It is evident from the data that Gz—stress effect slow tracking error
recovery and lower magnitude of the human describing function. This is,
perhaps, an indication of a lower control bandwidth on the part of the pilot
under positive acceleration stress.

The analytical phase, on its part, has resulted in a normative performance model
which has been validated by the experimental data. The model is based upon the
Optimal Control Model (OCM) and it has been augmented by a G-submodel to include the
acceleration effects. The model parameters, which reflect a person's inherent limita-
tions, depart from their nominal values to account for the performance degradation

under strenuous acceleration conditions.
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Virtually all the model parameters need to be perturbed in order to replicate the
data trends. It is shown that the model parameters which are affected are the observa-

tion noise, neuromotor time constant T and reaction time-delay, all of which exhibit

N’
a significant increase under Gz—stress. In addition, suome accumulative G-effects are
evident as TN remains higher than nominal in the post-G runs, reflecting a lower
control bandwidth, and perhaps fatigue.

The most noteworthy deviations from the nominal, however, are the increases in
the motor noise and in the error indifference threshold parameters. The first
results in higher control remmant levels and tracking error variances, which are
observed from the empirical data. The latter effccts o slow tracking - error recovery
in the closed-loop G-stress condition.

At present, we are pursuing a Gy—stress research program which is an extension of
this study. The Gy program, in addition to lateral accelerations, involves positive

vertical acceleration stress of upto5G, As the experimental data of this program

become available, the performance model under Gz—stress may be refined further.
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APPENDIX

IDENTIFLCATLON OF OCM PARAMETERS UNDER G-STRESS

The application of the Optimal Control Model (OCM) to a manual-control task
usually involves matching model predictions tao available experimental data. Tradi-
tionally, this has been done by tediously varying the model parameters until a
suitable model-data match has been obtained. In the past year, a comprehensive
Parameter ldentification Program for the OCM (OCMID) has been developed [47]. This
program provides an automated technology for the model-building process.

The OCMID is a modular computer package designed to identify parameters of the
OCM. iser-supplied routines determine the parameters to be identified and the form
of the program output. The package is designed with flexibility to allow any routine
to be interchanged with user - supplied routines, so the package can be tailored to
specific needs. In conjunction with the present G-model research, the OCMID has been
extended with additional routines, incorporating a graphics display subprogram.
Approach:

The objective is to identify the pilot describing function (magnitude and phase),
the remnant, and the model predicted performance scores. The OCM parameters that
generate these predictions are to be identified from experimental frequency measures
data so as to minimize a weighted least-squares objective functional. The minimiza-
tion of this cost functional provides a scalar metric, which in turn, reflects how
closely the currently obtained model matches the measured describing function's
magnitude and phase, control remnant and performance RMS scores. We choose, therefore,

the cost functional
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i=1
s, * RMS score of tracking error
s, " RMS score of control input
H(jmi) = Pilot describing function @ i-th input frequency
R (wi) = Pilot remnant @ i-th input frequency
J..y, = Ensemble standard deviation of the pertinent variable

(+) = Represents the OCMID current estimates

9.y = Relative weightings (at present = 1.)

=z
1]

Number of frequencies = 11

The choice of this cost functional gives a weighted least-squares fit to the
data. VNotice that each squared difference in J is divided by the appropriate ensemble
standard deviation. 1In this way, datum points with larger 0(.) are automatically
given less weight.

The minimization of J is carried out by applying Powell's non-gradient optimiza-
tion method [49}. Basically, Powell's method finds pseudo-conjugate gradient search
directions by perturbing the parameters in the Euclidean space. A bivariate quadratic
line search is used to minimize J in each search direction, such that the parameters
"move'" a step along each orthogonal direction. This means that in one Powell itera-

tion the parameters "move" along the average direction of all the individual orthogonal
|3

directions,

114




After the program has converged, a single quasi-Newton step is taken to ensure
convergence and to provide approximate confidence intervals for the identified para-

meters. To see this step we rewrite J as:

NT
1= 3 Z 2@ = o (A.2)
i=1
where:
NT = total number of the weighted squared differences
6 = parameter vector to be identified
ff = i-th squared term .

The quasi-Newton step is

- -1
okt = % g [-a—é : g] A (A.3)

where a is the one-dimensional line search minimizing element. In the case at hand,

NT = 2 + 3:-N_ = 35

[Keo)

= (‘)U, pe’ Oé’ TN’ T)

and the fi(g) terms are given by Equation (A.l). Note that the term inside the squared
brackets of Equation (A.3) is the approximated Hessian. The approximate confidence
interval for the identified parameter set is then given by the square-root of the

diagonal elements of the inverse Hessien.
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